Exercise 38

According to Boyle's Law, if the temperature of a confined gas is held fixed, then the product of the pressure P and the volume V is a constant. Suppose that, for a certain gas, $P V=800$, where P is measured in pounds per square inch and V is measured in cubic inches.
(a) Find the average rate of change of P as V increases from $200 \mathrm{in}^{3}$ to $250 \mathrm{in}^{3}$.
(b) Express V as a function of P and show that the instantaneous rate of change of V with respect to P is inversely proportional to the square of P.

Solution

Part (a)
Solve the provided equation of state for P.

$$
P=\frac{800}{V}
$$

The average rate of change of P as V increases from 200 in 3 to $250 \mathrm{in}^{3}$ is given by the slope of the secant line.

$$
m=\frac{P(250)-P(200)}{250-200}=\frac{\left(\frac{800}{250}\right)-\left(\frac{800}{200}\right)}{50}=-0.016
$$

The units of this rate of change are $\left(\mathrm{lb} / \mathrm{in}^{2}\right) / \mathrm{in}^{3}$, or $\mathrm{lb} / \mathrm{in}^{5}$.

Part (b)

Solve the provided equation of state for V.

$$
V=\frac{800}{P}
$$

Use the definition of the derivative.

$$
\begin{aligned}
V^{\prime}(P) & =\lim _{h \rightarrow 0} \frac{V(P+h)-V(P)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{800}{P+h}-\frac{800}{P}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{800 P}{P(P+h)}-\frac{800(P+h)}{P(P+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{800 P-800(P+h)}{P(P+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{800 P-800(P+h)}{h P(P+h)}
\end{aligned}
$$

Cancel out h and evaluate the limit.

$$
\begin{aligned}
V^{\prime}(P) & =\lim _{h \rightarrow 0} \frac{800 P-800 P-800 h}{h P(P+h)} \\
& =\lim _{h \rightarrow 0} \frac{-800 h}{h P(P+h)} \\
& =\lim _{h \rightarrow 0} \frac{-800}{P(P+h)} \\
& =\frac{-800}{P(P+0)} \\
& =-\frac{800}{P^{2}}
\end{aligned}
$$

Therefore, the instantaneous rate of change of V with respect to P is inversely proportional to the square of P.

